modQnets

title:

Methods of development, modelling and analysis of quantum internetworking protocols

Metody tworzenia, modelowania i analizy protokołów w intersieciach kwantowych

description:

The main objective of this project is to develop new protocols for controlling the networks of quantum processing units connected by quantum channels. This type of networks requires new methods allowing to fully utilize the capabilities offered by quantum information processing. Quantum internetworking protocols should be able to exploit the quantum effects, including quantum teleportation, dense coding and quantum key distribution. These effects operate on classical and quantum data and thus quantum internetworking protocols have to provide the means for operating on both types of data.

Currently quantum effects of dense coding and teleportation may lead to the conclusion that quantum information transmission allows for more efficient and safer data transmission in comparison to classical communication. The creation and testing of the model planned in the project will give an opportunity to verify this conviction.

participants:

Jarosław Miszczak (PI), Przemysław Sadowski (PhD student), Adam Glos (MSc student), Mateusz Ostaszewski (MSc student).

collaborators:

publications:

  1. A. Glos, J.A. Miszczak, Impact of the malicious input data modification on the efficiency of quantum spatial search, Quantum Information Processing, Vol. 18 (2019), pp. 343. DOI:10.1007/s11128-019-2459-3, arXiv:1802.10041
  2. A. Glos, A. Krawiec, R. Kukulski, Z. Puchała, Vertices cannot be hidden from quantum spatial search for almost all random graphs, Quantum Information Processing, Vol. 17, 81 (2018). arXiv:1709.06829
  3. M. Mc Gettrick, J.A. Miszczak, Quantum walks with memory on cycles, Physica A, Vol. 399 (2014), pp. 163-170. arXiv:1301.2905 DOI:10.1016/j.physa.2014.01.002
  4. P. Sadowski, J.A. Miszczak, M. Ostaszewski, Lively quantum walks on cycles, J. Phys. A: Math. Theor., Vol. 49, No. 37 (2016), pp. 375302. arXiv:1512.02802 DOI:10.1088/1751-8113/49/37/375302
  5. Ł. Pawela, P. Gawron, J.A. Miszczak, P. Sadowski, Generalized open quantum walks on Apollonian networks, PLoS ONE, Vol. 10, No. 7 (2015), pp. e0130967. arXiv:1407.1184 DOI:10.1371/journal.pone.0130967
  6. J.A. Miszczak, P. Sadowski, Quantum network exploration with a faulty sense of direction, Quantum Information & Computation, Vol. 14, No. 13&14 (2014), pp. 1238-1250. arXiv:1308.5923
  7. A. Glos, J.A. Miszczak, The role of quantum correlations in Cop and Robber game, Quantum Stud.: Math. Found., (2018), arXiv:1702.07932 DOI:10.1007/s40509-017-0148-4
  8. A. Glos, J.A. Miszczak, M. Ostaszewski, Limiting properties of stochastic quantum walks on directed graphs, J. Phys. A: Math. Theor., Vol. 51, No. 3 (2018), pp. 035304. arXiv:1703.01792 DOI:10.1088/1751-8121/aa9a4a
  9. P. Zawadzki, J.A. Miszczak, A general scheme for information interception in the ping pong protocol, Advances in Mathematical Physics, Vol. 2016 (2016), pp. 3162012. arXiv:1606.02108, DOI:10.1155/2016/3162012
  10. P. Zawadzki, Eavesdropping on quantum secure direct communication in quantum channels with arbitrarily low loss rate, Quantum Information Processing, Vol. 15, pp 1731-1741 (2016), DOI:10.1007/s11128-015-1232-5
  11. P. Zawadzki, An improved control mode for the Ping-Pong protocol operation in imperfect quantum channels, Quantum Information Processing, Vol. 14, pp. 2589-2598 (2015), DOI:10.1007/s11128-015-0989-x
  12. J.A. Miszczak, Ł. Pawela, J. Sładkowski, General model for a entanglement-enhanced composed quantum game on a two-dimensional lattice, Fluctuation and Noise Letters, Vol. 13, No. 2 (2014), pp. 1450012. arXiv:1306.4506,
    DOI:10.1142/S0219477514500126
  13. Ł. Pawela, Quantum games on evolving random networks, Physica A, Vol. 458 (2016), pp. 179-188. arXiv:1512.09104, DOI:10.1016/j.physa.2016.04.022
  14. A. Glos, P. Sadowski, Constructive quantum scaling of unitary matrices. Quantum Inf Process 15, 5145–5154 (2016). DOI:10.1007/s11128-016-1448-z
  15. D. Kurzyk, A. Glos, Quantum inferring acausal structures and the Monty Hall problem. Quantum Inf Process 15, 4927–4937 (2016). DOI:10.1007/s11128-016-1431-8
  16. Z. Puchała, A. Jenčová, M. Sedlák, and M. Ziman Exploring boundaries of quantum convex structures: Special role of unitary processes, Phys. Rev. A 92, 012304 (2015). DOI:10.1103/PhysRevA.92.012304
  17. P. Sadowski, Generating efficient quantum circuits for preparing maximally multipartite entangled states, International Journal of Quantum Information, Vol. 11, No. 07, 1350067 (2013), DOI:10.1142/S0219749913500676
  18. M Ostaszewski, P Sadowski, P Gawron, Quantum image classification using principal component analysis, Theoretical and Applied Informatics 27 (1), 1-12 (2015) arXiv:1504.00580
  19. J.A. Miszczak, Functional framework for representing and transforming quantum channels, In: Proc. Applications of Computer Algebra (ACA2013), Malaga, 2-6 July 2013, J.L. Galan Garcia, G. Aguilera Venegas, P. Rodriguez Cielos, (eds.), 2013 arXiv:1307.4906
  20. J.A. Miszczak, States and channels in quantum mechanics without complex numbers, Springer Proceedings in Mathematics & Statistics. Proc. of ACA 2015: Applications of Computer Algebra, Vol. 198 (2017), pp. 305-316. arXiv:1603.04787, DOI:10.1007/978-3-319-56932-1_21

dissemination:

acknowledgments:

This project has been supported by the Polish National Science Center SONATA call under the grant agreement 2011/03/D/ST6/00413 for the period 2012-09-03 - 2018-01-02.

main page | other projects

© 2005-2022 J.A. Miszczak
Last modification: 23/09/2022

Valid XHTML 1.0! Poprawny CSS!

stat4u SpamPoison