Impact of input data alteration and modification of the algorithm parameters on the efficiency of quantum programs
Wpływ zmiany danych wejściowych i modyfikacji parametrów algorytmu na wydajność programów kwantowych
description:
While the excitement in the area of quantum computing is fully justified by the
new theoretical developments, year by year scientists have discovered new
limitations of quantum computing devices. In particular, unitary operation
decomposition provides a number of problems including the applications to
hardware with fixed topology. Moreover, quantum algorithms have proved to be
sensitive to noise, which may impact the results of the computation. This
resulted in the development of a new branch of quantum computing, namely the
theory of quantum error-correcting codes. This aspect became even more critical
when first commercial quantum computing systems became available. Furthermore,
for quantum cryptographic protocols, hardware attacks, based on the security
holes of conventional electronics, have been discovered. This demonstrated that
the theoretical security confirmed by the laws of physics in the ideal
environment could lead to the creation of insecure protocols the real-world
applications.
The main goal of the project is to develop theoretical methods suitable for
analysing the impact of quantum programme alternation – input data modification
or imprecise implementation of the algorithm – on the efficiency of quantum
algorithms. Quantum programme is a sequence of quantum operations and the
quantum representation of input data which are sent to the quantum processor. In
some cases, we can consider quantum programme alternation as an action of a
malicious party, and in this scenario, we can understand it as an attack on a
quantum processor or quantum program.
K. Domino, A. Kundu, Ö. Salehi, K. Krawiec,
Quadratic and Higher-Order Unconstrained Binary Optimization of Railway Dispatching Problem for Quantum Computing,
Quantum Information Processing, 21:337,
DOI:10.1007/s11128-022-03670-y,
arXiv:2107.03234 (2022).
A. Kundu, J.A. Miszczak,
Transparency and enhancement in fast and slow light in q-deformed optomechanical system,
Annalen der Physik, Vol. 534, No. 8, 2200026,
DOI: 10.1002/andp.202200026,
arXiv: 2205.15800 (2022).
A. Kundu, J.A. Miszczak,
Variational certification of quantum devices,
Quantum Science and Technology, Vol. 7, 045017,
DOI: 10.1088/2058-9565/ac8572,
arXiv:2011.01879 (2022).
L. Botelho, A. Glos, A. Kundu, J.A. Miszczak, Ö. Salehi, Z. Zimborás,
Error mitigation for variational quantum algorithms through mid-circuit measurements,
Physical Review A, Vol. 105, 022441,
DOI: 10.1103/PhysRevA.105.022441,
arXiv:2108.10927 (2022).
D. Magano, A. Kumar, M. Kālis, A. Locāns, A. Glos, S. Pratapsi, G. Quinta, M. Dimitrijevs, A. Rivošs, P. Bargassa, J. Seixas, A. Ambainis, Y. Omar,
Investigating Quantum Speedup for Track Reconstruction: Classical and Quantum Computational Complexity Analysis,
Physical Review D, Vol. 105, 076012,
DOI: 10.1103/PhysRevD.105.076012,
arXiv:2104.11583 (2022).
A. Glos, A. Krawiec, Z. Zimboras,
Space-efficient binary optimization for variational computing,
npj Quantum Information, Vol. 8, No. 1, 39,
DOI: 10.1038/s41534-022-00546-y,
arXiv:2009.07309 (2022).
Ö. Salehi, A. Glos, J.A. Miszczak,
Unconstrained Binary Models of the Travelling Salesman Problem Variants for Quantum Optimization,
Quantum Information Processing, Vol. 21, 67 (2022),
DOI:10.1007/s11128-021-03405-5,
arXiv:2106.09056 (2022).
A. Kundu, C. Jin, J.-X. Peng,
Study of the optical response and coherence of a quadratically coupled optomechanical system,
Physica Scripta, 96 065102 (2021),
DOI:10.1088/1402-4896/abee4f.
A. Kundu, C. Jin, J.-X. Peng,
Optical response of a dual membrane active–passive optomechanical cavity,
Annals of Physics 429, 168465 (2021),
DOI:10.1016/j.aop.2021.168465,
arXiv:2011.05833
Z. Tabi, K. H. El-Safty, Z. Kallus, P. Hága, T. Kozsik, A. Glos, Z. Zimborás,
Quantum Optimization for the Graph Coloring Problem with Space-Efficient Embedding,
2020 IEEE International Conference on Quantum Computing and Engineering (QCE), 12-16 Oct. 2020,
DOI:10.1109/QCE49297.2020.00018,
arXiv:2009.07314 (2020).
preprints:
A. Kundu, L. Botelho, A. Glos,
Hamiltonian-Oriented Homotopy QAOA,
arXiv:2301.13170 (2023)
Tamal Acharya, Akash Kundu, Aritra Sarkar,
Quantum Accelerated Causal Tomography: Circuit Considerations For Applications In Bioinformatics and AGI
arXiv:2209.02016 (2022)
Bence Bakó, Adam Glos, Özlem Salehi, Zoltán Zimborás,
Near-optimal circuit design for variational quantum optimization,
arXiv:2209.03386 (2022).
Numerical experiements for QUBO and HOBO of Railway Rescheduling for Quantum Computing,
GitHub repository
Jupyter notebook with codes used for generating the music pieces presented in the chapter Music Composition Using Quantum Annealing,
DOI:10.5281/zenodo.5856930
(GitHub repo)
This project has been supported by the Polish
National Science Center under
the grant agreement 2019/33/B/ST6/02011 for the period 30/01/2020 - 29/01/2024.
updates:
04/01/2023 - Ludmila Botelho has been accepted in Xanadu Residency Program for 2023. Congratulations!
10/11/2022 - Akash Kundu has been awarded a scholarship by the Rector of the Silesian University of Technology for publishing in one of the top-ranked journals. Congratulations!