Impact of input data alteration and modification of the algorithm parameters on the efficiency of quantum programs

Wpływ zmiany danych wejściowych i modyfikacji parametrów algorytmu na wydajność programów kwantowych


QProgMods logo While the excitement in the area of quantum computing is fully justified by the new theoretical developments, year by year scientists have discovered new limitations of quantum computing devices. In particular, unitary operation decomposition provides a number of problems including the applications to hardware with fixed topology. Moreover, quantum algorithms have proved to be sensitive to noise, which may impact the results of the computation. This resulted in the development of a new branch of quantum computing, namely the theory of quantum error-correcting codes. This aspect became even more critical when first commercial quantum computing systems became available. Furthermore, for quantum cryptographic protocols, hardware attacks, based on the security holes of conventional electronics, have been discovered. This demonstrated that the theoretical security confirmed by the laws of physics in the ideal environment could lead to the creation of insecure protocols the real-world applications.

The main goal of the project is to develop theoretical methods suitable for analysing the impact of quantum programme alternation – input data modification or imprecise implementation of the algorithm – on the efficiency of quantum algorithms. Quantum programme is a sequence of quantum operations and the quantum representation of input data which are sent to the quantum processor. In some cases, we can consider quantum programme alternation as an action of a malicious party, and in this scenario, we can understand it as an attack on a quantum processor or quantum program.

Detailed description


Jarosław Miszczak (PI), Özlem Salehi (post-doctoral researcher), Adam Glos (researcher), Ludmila Botelho (PhD student), Akash Kundu (PhD student).



Open PhD position (in Polish)

Open post-doc position


  1. J.-X. Peng, A. Kundu, Z.-X. Liu, A. ur Rahman, N. Akhtar, M. Asjad, Vector photon-magnon-phonon coherence in a polarized microwave driven cavity magnomechanical system, Phys. Rev. B 109, 064412 (2024) DOI:10.1103/PhysRevB.109.064412
  2. A. Kundu, L. Botelho, A. Glos, Hamiltonian-Oriented Homotopy QAOA, Physical Review A, 109, 022611 (2024) DOI:10.1103/PhysRevA.109.022611 arXiv:2301.13170
  3. Y.J. Patel, A. Kundu, M. Ostaszewski, X. Bonet-Monroig, V. Dunjko, O. Danaci, Curriculum reinforcement learning for quantum architecture search under hardware errors, 12th International Conference on Learning Representations, arXiv:2402.03500
  4. A. Kundu, P. Bedełek, M. Ostaszewski, O. Danaci, Y.J. Patel, V. Dunjko, J.A. Miszczak, Enhancing variational quantum state diagonalization using reinforcement learning techniques, New Journal of Physics, 26, 013034 (2024), DOI:10.1088/1367-2630/ad1b7f arXiv:2306.11086.
  5. J.A. Miszczak, Symbolic quantum programming for supporting applications of quantum computing technologies, Programming '23 Companion: Companion Proceedings of the 7th International Conference on the Art, Science, and Engineering of Programming, pp. 101-108 (2023) DOI:10.1145/3594671.3594688, arXiv:2302.09401.
  6. B. G. Bach, A. Kundu, T. Acharya, A. Sarkar, Visualizing Quantum Circuit Probability: Estimating Quantum State Complexity for Quantum Program Synthesis, Entropy, 25(5), 763 (2023), DOI:10.3390/e25050763, arXiv:2304.02358.
  7. R. Glück, I. Lanese, C.A. Mezzina, J.A. Miszczak, I. Phillips, I. Ulidowski, G. Vidal, Towards a Taxonomy for Reversible Computation Approaches, M. Kutrib and U. Meyer (Eds.): RC 2023,15th International Conference on Reversible Computation (RC), 18-19 July, 2023, Giessen, Germany, Lecture Notes in Computer Science, Vol. 13960, pp. 24–39, (2023), DOI:10.1007/978-3-031-38100-3_3.
  8. A. Glos, A. Kundu, Ö. Salehi, Optimizing the Production of Test Vehicles using Hybrid Constrained Quantum Annealing, SN Computer Science, 4 (5), 609 (2023), DOI:10.1007/s42979-023-02071-x, arXiv:2203.15421/
  9. K. Domino, A. Kundu, Ö. Salehi, K. Krawiec, Quadratic and Higher-Order Unconstrained Binary Optimization of Railway Dispatching Problem for Quantum Computing, Quantum Information Processing, 21:337 (2022), DOI:10.1007/s11128-022-03670-y, arXiv:2107.03234/
  10. A. Kundu, J.A. Miszczak, Transparency and enhancement in fast and slow light in q-deformed optomechanical system, Annalen der Physik, Vol. 534, No. 8, 2200026, DOI: 10.1002/andp.202200026, arXiv: 2205.15800 (2022).
  11. A. Kundu, J.A. Miszczak, Variational certification of quantum devices, Quantum Science and Technology, Vol. 7, 045017, DOI: 10.1088/2058-9565/ac8572, arXiv:2011.01879 (2022).
  12. L. Botelho, A. Glos, A. Kundu, J.A. Miszczak, Ö. Salehi, Z. Zimborás, Error mitigation for variational quantum algorithms through mid-circuit measurements, Physical Review A, Vol. 105, 022441, DOI: 10.1103/PhysRevA.105.022441, arXiv:2108.10927 (2022).
  13. D. Magano, A. Kumar, M. Kālis, A. Locāns, A. Glos, S. Pratapsi, G. Quinta, M. Dimitrijevs, A. Rivošs, P. Bargassa, J. Seixas, A. Ambainis, Y. Omar, Investigating Quantum Speedup for Track Reconstruction: Classical and Quantum Computational Complexity Analysis, Physical Review D, Vol. 105, 076012, DOI: 10.1103/PhysRevD.105.076012, arXiv:2104.11583 (2022).
  14. A. Arya, L. Botelho, F. Cañete, D. Kapadia, Ö. Salehi, Applications of Quantum Annealing to Music Theory in Eduardo Reck Miranda (ed.), Quantum Computer Music: Foundations, Methods and Advanced Concepts, pp 373–406 (2022), ISBN: 978-3-031-13908-6 (hardcover), 978-3-031-13911-6 (softcover) DOI:10.1007/978-3-031-13909-3_15, arXiv:2201.10557 (2022).
  15. A. Glos, A. Krawiec, Z. Zimboras, Space-efficient binary optimization for variational computing, npj Quantum Information, Vol. 8, No. 1, 39, DOI: 10.1038/s41534-022-00546-y, arXiv:2009.07309 (2022).
  16. Ö. Salehi, A. Glos, J.A. Miszczak, Unconstrained Binary Models of the Travelling Salesman Problem Variants for Quantum Optimization, Quantum Information Processing, Vol. 21, 67 (2022), DOI:10.1007/s11128-021-03405-5, arXiv:2106.09056 (2022).
  17. A. Kundu, C. Jin, J.-X. Peng, Study of the optical response and coherence of a quadratically coupled optomechanical system, Physica Scripta, 96 065102 (2021), DOI:10.1088/1402-4896/abee4f.
  18. A. Kundu, C. Jin, J.-X. Peng, Optical response of a dual membrane active–passive optomechanical cavity, Annals of Physics 429, 168465 (2021), DOI:10.1016/j.aop.2021.168465, arXiv:2011.05833
  19. A. Glos, M. Kokainis, R. Mori, J. Vihrovs, Quantum speedups for dynamic programming on n-dimensional lattice graphs, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021), August 23-27, 2021, Tallinn (Estonia), Leibniz International Proceedings in Informatics (LIPIcs), vol. 202, pp. 50:1-50:23 (2021), DOI:10.4230/LIPIcs.MFCS.2021.50, arXiv:2104.14384
  20. Z. Tabi, K. H. El-Safty, Z. Kallus, P. Hága, T. Kozsik, A. Glos, Z. Zimborás, Quantum Optimization for the Graph Coloring Problem with Space-Efficient Embedding, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), 12-16 Oct. 2020, DOI:10.1109/QCE49297.2020.00018, arXiv:2009.07314


  1. Aritra Sarkar, Akash Kundu, Matthew Steinberg, Sibasish Mishra, Sebastiaan Fauquenot, Tamal Acharya, Jarosław A Miszczak, Sebastian Feld, YAQQ: Yet Another Quantum Quantizer--Design Space Exploration of Quantum Gate Sets using Novelty Search, arXiv:2406.17610 (2024).
  2. Ankit Khandelwal, Handy Kurniawan, Shraddha Aangiras, Özlem Salehi, Adam Glos, Classification and transformations of quantum circuit decompositions for permutation operations arXiv:2312.11644 (2023)
  3. Ludmila Botelho, Özlem Salehi, Fixed interval scheduling problem with minimal idle time with an application to music arrangement problem arXiv:2310.14825 (2023)
  4. Mostafa Atallah, Haemanth Velmurugan, Rohan Sharma, Siddhant Midha, Shamim Al Mamun, Ludmila Botelho, Adam Glos, Özlem Salehi, Integer Factorization through Func-QAOA, arXiv:2309.15162 (2023)
  5. Mátyás Koniorczyk, Krzysztof Krawiec, Ludmila Botelho, Nikola Bešinović, Krzysztof Domino, Application of a Hybrid Algorithm Based on Quantum Annealing to Solve a Metropolitan Scale Railway Dispatching Problem, arXiv:2309.06763 (2023)
  6. Tamal Acharya, Akash Kundu, Aritra Sarkar, Quantum Accelerated Causal Tomography: Circuit Considerations For Applications In Bioinformatics and AGI arXiv:2209.02016 (2022)
  7. Bence Bakó, Adam Glos, Özlem Salehi, Zoltán Zimborás, Near-optimal circuit design for variational quantum optimization, arXiv:2209.03386 (2022).
  8. T. Chatterjee, S.I. Mohtashim, A. Kundu, On The Variational Perspectives To The Graph Isomorphism Problem, arXiv:2111.09821 (2021).
  9. Ö. Salehi, A. Yakaryılmaz, State-efficient QFA Algorithm for Quantum Computers, arXiv:2107.02262 (2021).
  10. R. Kukulski, A. Glos, Comment to Spatial Search by Quantum Walk is Optimal for Almost all Graphs, arXiv:arXiv:2009.13309 (2020).



related resources:


This project has been supported by the Polish National Science Center under the grant agreement 2019/33/B/ST6/02011 for the period 30/01/2020 - 29/01/2024.


main page | other projects

© 2005-2023 J.A. Miszczak
Last modification: 29/06/2024

Valid XHTML 1.0! Poprawny CSS!